Ambient Air Quality Standard Development

▶ Process

▶ Standards

► Implementation

▶ Pollutants of Concern

► Tools

Process

► Epidemiological Studies

Peer Review by Science Advisory Board


Recommended Range of "Safe Levels"

► EPA Administrator Chooses within Range

► SIP Implementation

Standards

Implementation

- Federal authorities adopt NAAQS, identify attainment status
- State/local authorities develop emission inventory
- Model impacts of alternate options to achieve NAAQS (or reasonable further progress for serious nonattainment areas)
- Propose SIP a basket of regulations limiting emissions from different sources
- ► EPA review and approve, if EPA disapproves then EPA develops and implements FIP

Pollutants of Concern

- ► PM2.5
 - ► PM10,SO2, NOx
 - Power plants, other LCPs, agricultural burning, mobile sources
- Ozone
 - ► NOx, Volatile Organic Compounds (VOCs)
 - Mobile Sources, refineries, chemical plants, area sources

Tools – Mobile Sources

- Low Sulfur Diesel
- Reformulated Gasoline
- Periodic Motor Vehicle Inspection
- Public Transit Improvements
- Clunker buyback
- ► LNG/Propane buses
- Carpool Incentives
- ▶ LEV Incentives
- PM Traps/SCR for heavy duty diesels (new & retrofit)
- Stage 2 nozzles

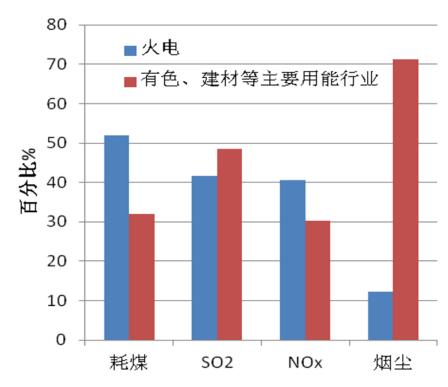
Tools – Stationary Sources

- SCR + FGD for power plants & LCPs (cement, refineries, ICI boilers)
- ▶ RTO for wood products
- ► Low VOC coatings
- Leak Detection and Repair (refineries, chemical plants)
- VOC control for storage tanks
- PM Control for small & medium factories (area sources)
- Restricting agricultural & other open burning

Pollutant Control in China's Coal-fired Power Generation Industry

燃煤电厂污染物的控制

电力规划设计总院 Electric Power Planning & Engineering Institute


2015 年 1 月 河北省石家庄市 Jan, 2015 Shijiazhuang, Hebei, China

大气灰霾成为重大民生问题 Air pollution becomes a severe problem

- → 研究表明,我国大气污染主要为煤烟型污染和机动车尾气污染的大气复合污染,燃煤污染为主;
 Research shows that air pollution in China is mainly the combination of coal gas and automobile emission, primarily coal gas.
- 883万吨、氮氧化物948万吨、烟尘 151万吨,分别占全国总排放量的 41.7%、40.6%、12.2%。 In 2012, the total emission from coal-fired industry is SO2 883×10⁴t, NOx 948×10⁴t, dust 151×10⁴t. That is 41.7%, 40.6%, 12.2% of the total pollutant emission, respectively.

▶ 2012年我国火电行业排放二氧化硫

2012年火电和其它主要用能行业 耗煤和污染物排放占全国比例

Percentage of emission from coal-fired industry and other industries, 2012

火电环保标准 Development of "Pollutant emission standard"

- ▶ 《火电厂大气污染物排放标准》GB13223-1996,该标准自1997年1月1日起实施。 The "Pollutant emission standard" (GB13223-1996) was executed on Jan 1st, 1997.
- ▶ 《火电厂大气污染物排放标准》GB13223-2003,该标准自2004年1月1日起实施, 废止GB13223-1996标准。
 - The "Pollutant emission standard" (GB13223-2003) was executed on Jan 1st, 2004.
- ▶ 《火电厂大气污染物排放标准》GB13223-2011,该标准自2012年1月1日起实施, 废止GB13223-2003标准。

The "Pollutant emission standard" (GB13223-2011) was executed on Jan 1st, 2012.

新建、扩建 燃煤电厂	烟尘 / Dust mg/Nm³	二氧化硫 / SO ₂ mg/Nm³	氮氧化物 / NOx mg/Nm³
GB13223-1996	200~600	1200~2100	650~1000
GB13223-2003	50~200	400~1200	450~1100
GB13223-2011	20~30	50~200	100~200

火电环保排放标准演变 Development of emission standard in coal-fired industry

Relevant environment protection policies & rules

火电环保标准比较 Comparison of "Pollutant emission standard"

- ➤ 2011年7月29日,中国发布了《火电厂大气污染物排放标准》(GB13223-2011)
 - , 此标准实施后,燃煤电厂的污染物排放将大幅降低 。

On July 29 2011, the "Pollutant emission standard" (GB13223-2011) has been published, and as a result, the pollutant emission decrease tremendously.

国 家 / Country	烟 尘 / Dust mg/Nm³	二氧化硫 / SO ₂ mg/Nm³	氮氧化物 / NOx mg/Nm³
美 国/USA	20	184	135
日 本/Japan	50-100	200	200
欧 盟/EU	30	200	200
澳大利亚 / Australia	100	200	460
加拿大 / Canada	130	740	460
新西兰 / New Zealand	125	350	410
中 国(非重点地区) China's normal region	30	100-400	100-200
中 国(重点地区) China's crucial region	20	50	100

Pollutant emission control technologies for coal-fired power plants

除尘技术—技术路线选择 Dust removal-technology routine

(低低温) 电除尘器(采用提效措施)+吸收塔除尘+湿式除尘器

•电除尘器配合各类提效措施,如移动电极技术、分室振打技术、高频电源等,使电除尘器出口浓度不大于20 mg/Nm³。考虑吸收塔的整体除尘效果后,再配置70%左右除尘效率的湿式除尘器,烟尘排放可达到5mg/Nm³。如:浙能六横电厂。 ESP combined with moveable electric paddle, separate room vibration, high-frequency electric source, can reduce dust at the exit of ESP to 20mg. Considering the dust removal effect in absorption tower, and with wet ESP at 70% efficiency, the dust emission can be no large than 5mg.

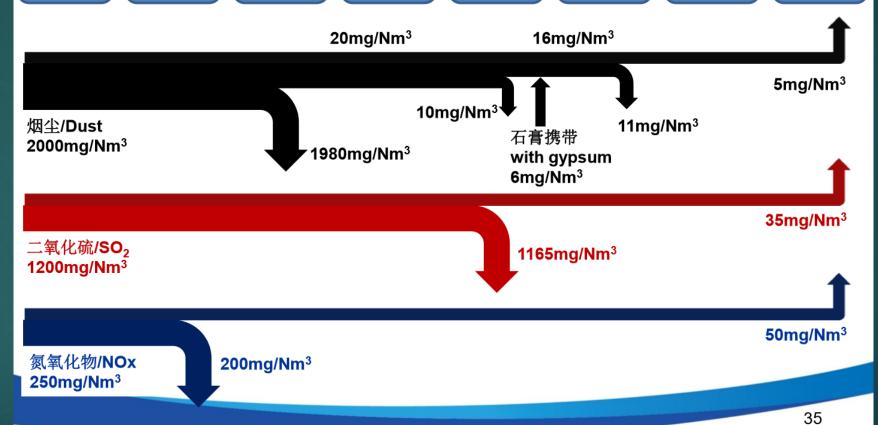
低低温电除尘器+高效除尘吸收塔

•采用低低温电除尘器,使电除尘器出口浓度不大于15^{20 mg/Nm³},采用高效除尘吸收塔后,烟尘排放可达到5mg/Nm³。如:华能长兴电厂。 Apply low low temperature ESP to reduce the exit dust to 15^{20mg}, and use high efficiency absorption tower to achieve dust emission at 5mg.

袋式除尘器

超净排放典型工程

Typical super low emission projects


超净排放典型布置 Typical arrangement of super low emission project

锅炉 Boiler

SCR

除尘器 ESP 换热器 Heat exchanger 湿法脱硫 Wet de-SOx 湿式 电除尘器 Wet ESP 管式 换热器 GGH

烟囱 Chimney

Getting to Healthy Air in Indonesia

- ▶ Will require "all of the above" approach
- Priorities clean fuels, power plants

Costs

Clean Fuels and Power Plant Controls Are the Most Cost Effective Options to Significantly Reduce Pollution Levels in the Near Term

 Controlling Existing Power Plants Will Cost But a Few Dollars per Person per Year – Less than the Cost of Not Using Them

Controlling Existing Power Plants Will Cost Less Than the Cost of Idle Excess Capacity and Far Less Than Planned New Construction

Potential Options for Energy Sector

- Accept a lower reserve margin;
- Cancel new coal-fired generation; mothball excess PLN generating capacity
- ▶ Implement EE and DSM programs
- Review & implement programs to reduce T&D losses
- Buyout excess under construction capacity PPAs; apply stringent emission limits to under construction units
- ► Environmental Dispatch
- ▶ Low sulfur coal, interim NOx controls now
- Develop and implement phased plan to install full controls